The sockeye salmon ( Oncorhynchus nerka), also called red salmon, kokanee salmon, blueback salmon, or simply sockeye, is an anadromous species of salmon found in the Pacific Ocean and rivers discharging into it. This species is a Pacific salmon that is primarily red in hue during spawning. They can grow up to in length and weigh . Juveniles remain in freshwater until they are ready to fish migration to the ocean, over distances of up to . Their diet consists primarily of zooplankton. Sockeye salmon are semelparous, dying after they spawn. Some populations, referred to as Kokanee salmon, do not migrate to the ocean and live their entire lives in fresh water.
In Japan, a landlocked variety termed black kokanee, or " kunimasu" in Japanese, was deemed to be extinct after 1940, when a hydroelectric project made its native lake in northern Akita Prefecture more acidic. The species seems to have been saved by transferring eggs to Saiko Lake, 500 kilometers to the south, however. Scientist says he found Japan fish thought extinct Bay Ledger, December 14, 2010 This fish has been treated as a subspecies of sockeye Oncorhynchus nerka kawamurae, or even an independent species Oncorhynchus kawamurae.
Sockeye salmon, unlike other species of Pacific salmon, feed extensively on zooplankton during both freshwater and saltwater life stages. They also tend to feed on small aquatic organisms such as shrimp. Insects and occasionally snails are part of their diets at the juvenile stage.
Non-dominant males adopt a subordinate behavior, acting as a satellite to mated pairs. During spawning, a subordinate male will move quickly into the redd and release their sperm. Nearby dominant males from other redds will also do this. Male social status is positively correlated to length and dorsal hump size. Larger females tend to spawn in shallower water, which is preferred over deeper water.
There is a dramatic sexual dimorphism at maturity. Males go through numerous morphological changes at maturation including, an increase in body depth, hump height, and snout length. Snout size also increases in females, but hump height and adipose fin length do not increase. This could mean that longer snout sizes are sexually selected, but hump height and adipose fin length are not. Females develop large gonads that are about 25% of the body mass.
Females are responsible for parental care. They select, prepare, and defend a nest site until they die or are displaced. Males do not participate in parental care at all, and they move between females after egg deposition.
Some traits that lead to reproductive success, such as body size and sexual dimorphism can affect one's survival. This leads to opposing pressures of natural selection and sexual selection. Larger males are favored, unless the risk of predation is very high. Sockeye salmon that die prematurely from predation are typically the larger ones in a population. This shows natural selection against large bodies. Populations with higher levels of predation tend to evolve smaller body size. Without the threat of predation, salmon that breed early in the season live longer than those that breed late in the season.
Other ecological factors like stranding effect select for smaller body size in sockeye salmon when present in a habitat. Stranding is when salmon swim into dry land or shallow water during their migration for spawning and die from suffocation. In fact, studies show that the sockeye salmon with the largest bodies are most susceptible to stranding mortality.
Competition for food or space while the salmon are in their lake residence period can exist. This happens when there is a more populous class of young sockeye or when there are multiple classes present. It can also happen when resources are in short supply. Interspecific competition can also occur and can lead to interactive segregation, which is when species emphasize their differences in diet and habitat to avoid competition. Interspecific competition can affect the growth rates of the salmon if their access to resources is limited.
Commercial fishermen in Alaska net this species using Seine fishing and for fresh or frozen fillet sales and canning. The annual catch can reach 30 million fish in Bristol Bay, Alaska, which is the site of the world's largest sockeye harvest.
Sockeye salmon have long been important in the diet and culture of the Coast Salish people of British Columbia.Jacob, C., McDaniels, T. & Hinch, S. Indigenous culture and adaptation to climate change: sockeye salmon and the St’át’imc people. Mitig Adapt Strateg Glob Change 15
The largest spawning grounds in Asia are located on the Kamchatka Peninsula of the Russian Far East, especially on the Ozernaya River of the Kurile Lake, which accounts for nearly 90% of all Asian sockeye salmon production,Gustafson, R.G., T.C. Wainwright, G.A. Winans, F.W. Waknitz, L.T. Parker, and R.S. Waples. 1997. Status review of sockeye salmon from Washington and Oregon. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-33, 282 p. Life History of Oncorhynchus nerka and is recognized as the largest spawning ground outside of Alaska. Illegal fishing in Kamchatka is subject to environmental concern.
Sockeye is almost never farmed. A facility in Langley, BC harvested its first salmon in March 2013, and continues to harvest farmed salmon from its inland facility.
Sockeye is an exception to 2010's forecast resurgence of Oregonian fish stocks. Spring Chinook salmon, summer Rainbow trout, and Coho salmon are forecast to increase by up to 100% over 2008 populations. The sockeye population peaked at over 200,000 in 2008 and were forecast to decline to just over 100,000 in 2010. As an early indication of the unexpectedly high sockeye run in 2010, on July 2, 2010, the United States Army Corps of Engineers reported over 300,000 sockeye had passed over Bonneville Dam on the Columbia River. Lower temperatures in 2008 North Pacific waters brought in fatter plankton, which, along with greater outflows of Columbia River water, fed the resurgent populations.
Proposed legislative efforts, such as the Northern Rockies Ecosystem Protection Act, are attempting to protect the headwaters of the sockeye salmon by preventing industrial development in roadless areas.
Record numbers of a once-waning population of sockeye salmon have been returning to the Northwest's Columbia Basin (as of June 2012), with thousands more crossing the river's dams in a single day than the total numbers seen in some previous years.
The Fraser River salmon run has experienced declines in productivity since the 1990s, mirroring a similar decline in the 1960s.
The return abundance (population) of Fraser River sockeye in 2009 was estimated at a very low 1,370,000, 13% of the pre-season forecast of 10,488,000.
That represented a decline from the recent (1993) historical cycle peak of 23,631,000
and the return abundance was the lowest in over 50 years. The reasons for this (former) decline remain speculative. According to a consortium of scientists assembled to review the problem, the decline highlights the uncertainty in forecasting salmon returns.
After the low returns, the Government of Canada launched a formal inquiry into the decline, the Commission of Inquiry into the Decline of Sockeye Salmon in the Fraser River.
The Commission has been tasked with investigating all the factors which may affect Fraser River sockeye salmon throughout their life cycle. According to the terms of reference, the subjects of investigation are "the impact of environmental changes along the Fraser River, marine environmental conditions, aquaculture, predators, diseases, water temperature and other factors that may have affected the ability of sockeye salmon to reach traditional spawning grounds or reach the ocean."
During the commission, hundreds of thousands of documents and scientific research papers were reviewed. Twelve technical reports were published using that information, looking at the possible impacts of diseases and parasites, hatchery diseases, contaminants, marine ecology, salmon farms, fisheries, predators, climate change and government management on the productivity of Fraser River sockeye runs.
While the commission was holding public hearings, in the late summer of 2010, the largest run of sockeye since 1913 returned to the Fraser River system.
Final counts show that approximately 30 million salmon returned to the Fraser River and its tributaries in 2010. In total, approximately 11,591,000 Fraser sockeye were caught by Canadian fishers and 1,974,000 Fraser sockeye were caught by American fishers. The final projected escapement (fish which were not caught) was 15,852,990 fish.
Recent unpredictable fluctuations in runs are speculated to be due to changing water temperatures.
There is high variation in thermal tolerance among the different sockeye salmon populations that migrate up the Fraser River. The Chilko River sockeye salmon population is able to maintain cardiorespiratory function at higher temperatures, which may make them more resilient to the effects of rising river temperatures. In one study examining possible physiological mechanisms underlying these population differences in thermal tolerance, juvenile sockeye salmon from the Chilko River and Weaver Creek did not show any differences in force-frequency response of the heart or cardiac pumping capacity when reared in common garden temperatures at 5 °C and 14 °C. Therefore, the physiology underlying these differences in thermal tolerance has yet to be determined.
== Gallery ==
Life cycle
Reproduction
Sexual selection and natural selection
Energy cost
Competition
Fisheries and consumption
/ref>
Conservation status
United States
Canada
External links
|
|